

Briefing to the ESSAAC Technology Subcommittee (TSC)

on

Passive Microwave (Radiometer) Electronics Technology Requirements & Roadmaps

Edward Kim NASA/GSFC

12 2004

NASA

Outline

- √Process followed by Working Group
- >ESTO focuses on TRL range 2-3 to 5-6
- > Passive microwave scenarios
- >Example measurement requirements
- > Technology challenge areas for passive electronics
 - Overview
 - ·Major groupings
 - ·Histograms
 - ·Overlaps with other subgroups
- >Prioritization recommendations
- >Integrated roadmap
- >Improvement suggestions

ESTO

Science Measurement Scenarios for Passive Remote Sensing

Measurement Parameters	Focus Science Areas	Measurement Scenarios		
Snow Cover, Accumulation and Water (SWE, wetness)	Water & Energy Cycle; Weather; and Climate Variability & Change	106, 107, 108, H2, C2		
Freeze/Thaw Transition (Growing Season)	Water & Energy Cycle; and Climate Variability & Change	HI		
Soil Moisture	Water & Energy Cycle; 34, 38, 111, 177, H: Weather; and Climate Variability & Change			
Precipitation	Water & Energy Cycle and Weather	67, 176, A1,A2		
Sea Surface Salinity	Climate Variability & Change	34, 38, 111		
Sea Surface Temperature	Climate Variability & Change	01		
Atmospheric Temperature	Water & Energy Cycle and Weather	67, 176		
Atmospheric Water Vapor	Water & Energy Cycle and Weather	67, 176		
Ocean Surface Winds	Weather	A2		
Ozone Profile	Atmospheric Composition	140		
Cloud System Structure	Atmospheric Composition	143		
Wet Path Delay	Solid Earth (Geodesy)	53		

Sample Radiometer Requirements Development

Measurement Parameter	Scenario ID	Sensor type	Sensor Description	Electronics Technology Requirements	Comments
			Hydrology		
Snow cover, accumulation, and water equivalent (i.e, SWE & wetness)	C2	Synthetic Thinned Array Radiometer (STAR)	STAR imager with no moving parts which images via software beam forming. Wide swath, ~5 km spatial resolution at 19 and 37 GHz with dual linear polarizations.	Low power, microwave PLL Local Oscillators; Distributed correlated microwave noise sources.	Enabling Technology (ESTO Technology Planning Workshop 2003, panel D; revised by ESTO Radar/Radiometer Working Group 2003)
Soil moisture, Sea surface salinity	38	Large Real Aperture Antenna Radiometer and Scatterometer	Rotating ~25-m diameter antenna with 10-km resolution in a conical scan. Alternatively, a parabolic torus containing a push-broom focal plane array with > 100 elements eliminates the need to rotate the system. 1.4 GHz polarimetric radiometers with a stability of 0.1 K over periods of 2-5 days. 3rd Stokesto correct for the ionosphere. 1.2 GHz radar to provide roughness correction.	Low power MMIC "radiometers- on-a-chip"; Ultra-stable radiometers with receiver stability ~0.1K over several days; Analog RFI mitigation; combined active-passive system design	Enhancing Technology (for Electronics) (ESTO Technology Planning Workshop 2003, panel D; revised by ESTO Radar/Radiometer Working Group 2003.)

- ESTO

Platforms/Orbits

Platform	LEO	MEO	GEO	UAV	Ground
Scenarios	16	0	2	2	1
Parameters	9	0	3	2	1

- •Note that two scenarios (A1 and A2) list both UAV and spaceborne LEO orbits as platform options.
- •Some precipitation scenarios call for LEO while others call for GEO.
- •LEO applies to the greatest number of measurement scenarios combining improved resolution from larger apertures with the lower range of operating frequencies. This represents a desire for finer spatial resolutions attainable with larger apertures in lower orbits while subject to limitations on overall package size.

44

Frequency Bands

Frequency Band	L	C	X	Ku (18)	K (21)	Ka	V (50)	w	100- 300 GHz	300- 1000 GHz	>1 THz
Scenarios	10	5	5	6	1	7	2	3	4	2	2
Parameters	4	4	5	2	1	3	3	1	5	2	2

 $Overall\ the\ 1\ to 100\text{-}GHz\ frequency\ range\ covers\ most\ of\ the\ interest\ and\ is\ the\ range\ over\ which\ the\ majority\ of\ microwave-water\ cycle\ interactions\ occur\ (soil\ moisture,\ salinity,\ snow,\ freeze/thaw,\ sea\ ice,\ precipitation).$

Frequencies above 100 GHz generally have specific applications, primarily atmospheric composition and clouds representing a more specialized subset of the measurement scenarios.

Significant RFI is observed at L & C bands. RFI mitigation is needed immediately.

Polarizations

# of Pols	1-2	>=3	4
Scenarios	11	8	2
Parameters	11	6	2

- \bullet 1-2 pols: no ionospheric propagation considerations or 2D-STAR polarization separation considerations
- >=3 Stokes' parameters: either
 (a) real-aperture or 1D-STAR and ionospheric correction is required or
 (b) 2D-STAR and polarization separation might be needed.
- 4 Stokes' parameters: 2D-STAR when polarization separation is definitely needed.

Note: Some scenarios involve combinations of low frequencies (with ionospheric considerations) and higher frequencies (no ionospheric correction needed), resulting in certain measurement scenarios appearing in more than one category.

Combined Passive/Active Instruments

Potential	Yes	Possibly	No (Passive Only)
Scenarios	5	4	10
Parameters	3	2	7

Highest return:

MMIC/ Miniature+ Low Mass/Power Radiometers, MEMS filters and RF switches, analog RFI Mitigation Technology

Next highest return:

Calibration subsystem for correlation radiometers, on-board RF signal distribution, combined active/passive system design, 3&4-Stokes polarimetric receiver design, ultrastable low loss radiometers.

Medium/Lower return:

High frequency LNAs > 160 GHz, LO sources > 50 GHz, down-conversion techniques > 900 GHz, and mmW/smmW detectors.

Technology Challenge	scenarios max =19	parameters max =12
High Frequency Radiometer Electronics		
High Frequency LNAs >160 GHz	5	5
High Frequency >= 50 GHz Sources (LO)	6	6
MMW/sMMW detectors	6	6
High Frequency Downconversion Techniques >900 GHz 2	2	
Miniature Radiometer Electronics		
MMIC/ Miniature Radiometers & Low Mass/Power Receiver Elements	16	11
MEMS RF switches	14	10
MEMS filters	14	10
Systems-level Radiometer Design Technologies		
Analog RFI Mitigation Technology	15	8
Calibration subsystem for correlation radiometers	13	6
On-board RF signal distribution	13	9
3 or 4 Stokes-polarimetric receiver design	10	8
Ultrastable Low Loss Radiometers	11	6
Combined active/passive system design	9	5

Representative listing of academic and industry participation/collaborations

- •MEMS: Darpa (extensive program)
- •MMICs/miniature receivers: TRW, Hughes, & a large number of other companies
- •3-4 Stokes radiometer design: NRL, ETL, Umass, U.Michigan
- •Calibration for correlation radiometers: U.Michigan, EMAG, NRL, ETL

